

Ohm's Law

Topics Covered in Chapter 3 3-1: The Current I = V/R3-2: The Voltage V = IR3-3: The Resistance R = V/I3-4: Practical Units 3-5: Multiple and Submultiple Units

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.

Topics Covered in Chapter 3

- 3-6: The Linear Proportion between V and I
- 3-7: Electric Power
- 3-8: Power Dissipation in Resistance
- 3-9: Power Formulas
- 3-10: Choosing a Resistor for a Circuit
- 3-11: Electric Shock
- 3-12: Open-Circuit and Short-Circuit Troubles

3-1-3-3: Ohm's Law Formulas

- There are three forms of Ohm's Law:
 - *I* = *V*/*R*
 - *V* = *IR*
 - *R* = *V*/*I*
- where:
 - I = Current
 - V = Voltage
 - R = Resistance

Fig. 3-4: A circle diagram to help in memorizing the Ohm's Law formulas V = IR, I = V/R, and R = V/I. The V is always at the top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-1: The Current I = V/R

- *I* = *V*/*R*
- In practical units, this law may be stated as:
 - amperes = volts / ohms

Fig. 3-1: Increasing the applied voltage *V* produces more current *I* to light the bulb with more intensity.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-4: Practical Units

- The three forms of Ohm's law can be used to define the practical units of current, voltage, and resistance:
 - 1 ampere = 1 volt / 1 ohm
 - 1 volt = 1 ampere × 1 ohm
 - 1 ohm = 1 volt / 1 ampere

3-4: Practical Units

3-5: Multiple and Submultiple Units

- Units of Voltage
 - The basic unit of voltage is the volt (V).
 - Multiple units of voltage are:
 - kilovolt (kV)
 1 thousand volts or 10³ V
 - megavolt (MV)
 1 million volts or 10⁶ V
 - Submultiple units of voltage are:
 - millivolt (mV)
 1-thousandth of a volt or 10⁻³ V
 - microvolt (µV)
 1-millionth of a volt or 10⁻⁶ V

3-5: Multiple and Submultiple Units

Units of Current

- The basic unit of current is the ampere (A).
- Submultiple units of current are:
 - milliampere (mA)
 - 1-thousandth of an ampere or 10⁻³ A
 - microampere (µA)

1-millionth of an ampere or 10⁻⁶ A

3-5: Multiple and Submultiple Units

- Units of Resistance
 - The basic unit of resistance is the Ohm (Ω).
 - Multiple units of resistance are:
 - kilohm (kW)
 - 1 thousand ohms or $10^3 \Omega$
 - Megohm (MW)
 - 1 million ohms or $10^6 \ \Omega$

The Ohm's Law formula I = V/R states that V and I are directly proportional for any one value of R.

(a)

Volts V	$\underset{\Omega}{\text{Ohms}}$	Amperes A
0	2	0
2	2	1
4	2	2
6	2	3
8	2	4
10	2	5
12	2	6

Fig. 3.5: Experiment to show that *I* increases in direct proportion to *V* with the same *R*. (*a*) Circuit with variable *V* but constant *R*. (*b*) Table of increasing *I* for higher *V*. (*c*) Graph of *V* and *I* values. This is a linear volt-ampere characteristic. It shows a direct proportion between *V* and *I*.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- When V is constant:
 - I decreases as R increases.
 - I increases as R decreases.
- Examples:
 - If R doubles, I is reduced by half.
 - If *R* is reduced to ¼, *I* increases by 4.
 - This is known as an *inverse relationship*.

- Linear Resistance
 - A linear resistance has a constant value of ohms. Its R does not change with the applied voltage, so V and I are directly proportional.
 - Carbon-film and metal-film resistors are examples of linear resistors.

The smaller the resistor, the steeper the slope.

- Nonlinear Resistance
 - In a nonlinear resistance, increasing the applied V produces more current, but I does not increase in the same proportion as the increase in V.
 - Example of a Nonlinear Volt–Ampere Relationship:
 - As the tungsten filament in a light bulb gets hot, its resistance increases.

- Another nonlinear resistance is a thermistor.
- A thermistor is a resistor whose resistance value changes with its operating temperature.
- As an NTC (negative temperature coefficient) thermistor gets hot, its resistance decreases.

Volts

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- The basic unit of power is the watt (W).
 - Multiple units of power are:
 - kilowatt (kW): 1000 watts or 10³ W
 - megawatt (MW):
 1 million watts or 10⁶ W
 - Submultiple units of power are:
 - milliwatt (mW):
 - 1-thousandth of a watt or 10⁻³ W
 - microwatt (µW):
 - 1-millionth of a watt or 10⁻⁶ W

- Work and energy are basically the same, with identical units.
- Power is different. It is the <u>time rate</u> of doing work.
 - Power = work / time.
 - Work = power × time.

- Practical Units of Power and Work:
 - The rate at which work is done (power) equals the product of voltage and current. This is derived as follows:
 - First, recall that:

$$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}} \text{ and } 1 \text{ ampere} = \frac{1 \text{ coulomb}}{1 \text{ second}}$$

Power (1 watt) =
$$\frac{1 \text{ joule}}{1 \text{ coulomb}} \times \frac{1 \text{ coulomb}}{1 \text{ second}} = \frac{1 \text{ joule}}{1 \text{ second}}$$

- Kilowatt Hours
 - The kilowatt hour (kWh) is a unit commonly used for large amounts of electrical work or energy.
 - For example, electric bills are calculated in kilowatt hours. The kilowatt hour is the billing unit.
 - The amount of work (energy) can be found by multiplying power (in kilowatts) × time in hours.

To calculate electric cost, start with the power:

- An air conditioner operates at 240 volts and 20 amperes.
- The power is $P = V \times I = 240 \times 20 = 4800$ watts.
 - Convert to kilowatts:

4800 watts = 4.8 kilowatts

- <u>Multiply by hours</u>: (Assume it runs half the day) energy = 4.8 kW × 12 hours = 57.6 kWh
- <u>Multiply by rate</u>: (Assume a rate of \$0.08/ kWh)
 cost = 57.6 × \$0.08 = \$4.61 per day

3-8: Power Dissipation in Resistance

- When current flows in a resistance, heat is produced from the friction between the moving free electrons and the atoms obstructing their path.
- Heat is evidence that power is used in producing current.

3-8: Power Dissipation in Resistance

 The amount of power dissipated in a resistance may be calculated using any one of three formulas, depending on which factors are known:

•
$$P = I^2 \times R$$

- $P = V^2 / R$
- *P* = *V*×*I*

There are three basic power formulas, but each can be in three forms for nine combinations.

- Combining Ohm's Law and the Power Formula
 - All nine power formulas are based on Ohm's Law.

Substitute IR for V to obtain:

$$\bullet P = VI$$

$$= I^2 R$$

Combining Ohm's Law and the Power Formula

Substitute V/R for I to obtain:

• P = VI= $V \times V/R$ = V^2/R

Applying Power Formulas:

$$P = VI = 20 \times 5 = 100 \text{ W}$$
$$P = I^2 R = 25 \times 4 = 100 \text{ W}$$
$$P = \frac{V^2}{R} = \frac{400}{4} = 100 \text{ W}$$

3-10: Choosing a Resistor for a Circuit

- Follow these steps when choosing a resistor for a circuit:
 - Determine the required resistance value as R = V / I.
 - Calculate the power dissipated by the resistor using any of the power formulas.
 - Select a wattage rating for the resistor that will provide an adequate cushion between the actual power dissipation and the resistor's power rating.

3-10: Choosing a Resistor for a Circuit

- Maximum Working Voltage Rating
 - A resistor's maximum working voltage rating is the maximum voltage a resistor can withstand without internal arcing.
 - The higher the wattage rating of the resistor, the higher the maximum working voltage rating.

3-10: Choosing a Resistor for a Circuit

- Maximum Working Voltage Rating
 - With very large resistance values, the maximum working voltage rating may be exceeded before the power rating is exceeded.
 - For any resistor, the maximum voltage which produces the rated power dissipation is:

•
$$V_{\text{max}} = \sqrt{P_{\text{rating}} \times R}$$

3-11: Electric Shock

- When possible, work only on circuits that have the power shut off.
- If the power must be on, use only one hand when making voltage measurements.
- Keep yourself insulated from earth ground.
- Hand-to-hand shocks can be very dangerous because current is likely to flow through the heart!

3-12: Open-Circuit and Short-Circuit Troubles

An open circuit has zero current flow.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-12: Open-Circuit and Short-Circuit Troubles

A short circuit has excessive current flow.

As *R* approaches 0, *I* approaches ∞ .

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.